

NOVA
University of Newcastle Research Online

nova.newcastle.edu.au

Ong, Lawrence; Ho, Chin Keong; Lim, Fabian “The single-uniprior index-coding
problem: the single-sender case and the multi-sender extension”. Originally published
in IEEE Transactions on Information Theory Vol. 62, Issue 6, p. 3165-3182

Available from:
http://dx.doi.org/10.1109/TIT.2016.2555950

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing

this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this

work in other works.

Accessed from: http://hdl.handle.net/1959.13/1323828

http://dx.doi.org/10.1109/TIT.2016.2555950
http://hdl.handle.net/1959.13/1323828

1

The Single-Uniprior Index-Coding Problem:
The Single-Sender Case and The Multi-Sender Extension

Lawrence Ong, Chin Keong Ho, Fabian Lim

Abstract—Index coding studies multiterminal source-coding
problems where a set of receivers are required to decode multiple
(possibly different) messages from a common broadcast, and they
each know some messages a priori. In this paper, at the receiver
end, we consider a special setting where each receiver knows
only one message a priori, and each message is known to only
one receiver. At the broadcasting end, we consider a generalized
setting where there could be multiple senders, and each sender
knows a subset of the messages. The senders collaborate to
transmit an index code. This work looks at minimizing the
number of total coded bits the senders are required to transmit.
When there is only one sender, we propose a pruning algorithm
to find a lower bound on the optimal (i.e., the shortest) index
codelength, and show that it is achievable by linear index codes.
When there are two or more senders, we propose an appending
technique to be used in conjunction with the pruning technique
to give a lower bound on the optimal index codelength; we also
derive an upper bound based on cyclic codes. While the two
bounds do not match in general, for the special case where no two
distinct senders know any message in common, the bounds match,
giving the optimal index codelength. The results are expressed in
terms of strongly connected components in directed graphs that
represent the index-coding problems.

I. INTRODUCTION

We investigate a broadcast problem over noiseless channels
with receiver side information, also known as index coding [1].
In the classical setup, one sender encodes a collection of
messages, and broadcasts the codeword to multiple receivers.
Each receiver knows some messages a priori, and is to decode
a set of messages it wants from the single codeword broadcast
by the sender. The aim is to find the shortest codeword that
the sender needs to broadcast to ensure that all receivers can
decode the messages they want. The index-coding problem
remains open to date; only a small number of special cases
have been solved [1]–[6].

In this paper, we consider a class of the index-coding
problem, which we refer to as single-uniprior, where each
receiver knows only one message a priori, but may request
multiple messages, and each message is known to only one
receiver. When there is only one sender, we completely solve
the single-uniprior index-coding problem. We show that linear
index codes are optimal for this class—although linear index

Copyright (c) 2014 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

Part of the material in this paper was presented at the IEEE International
Symposium on Information Theory, Istanbul, Turkey, July 7–12, 2013, and at
the IEEE International Conference on Communications, Ottawa, Canada, June
10–15, 2012.

This work was done when Fabian Lim was with Massachusetts Institute of
Technology under the support of NSF grant ECCS-1128226.

Lawrence Ong is the recipient of an Australian Research Council Future
Fellowship (FT140100219).

codes are suboptimal in general [7], e.g., when two receivers
know the same message.

We then extend the single-uniprior problem with a single
sender to multiple senders, where each sender knows a subset
of the messages. We derive lower and upper bounds on the
shortest index codelength, and identify cases where the bounds
match. In particular, the bounds match when no two senders
know any message in common.

A. Motivation of the multi-sender single-uniprior index-coding
problem

The single-uniprior index-coding problem formulation is
motivated by satellite communications [8]–[10], where multiple
clients exchange messages through a satellite, which acts as
a relay. Having no direct communication links, the clients
first send their messages to the satellite via an uplink channel.
The satellite decodes the messages, re-encodes, and broadcasts
to the clients via a downlink channel. Here, the downlink
corresponds to a single-uniprior index-coding problem, where
each client is to obtain messages of other clients, and it knows
only its own message a priori.

When multiple satellites are used, the downlink corresponds
to a multi-sender index-coding problem. In this case, different
senders know different messages a priori, due to, for instance,
decoding errors when getting the messages from the clients
on the uplink, line-of-sight only to some clients, or limited
storage of the senders. To the best of our knowledge, this is
the first paper that investigates the multi-sender index-coding
problem.

II. CHANNEL MODEL AND NOTATION

An instance of the multi-sender index-coding problem
(including the single-sender as a special case) consists of the
following:
• m independent messages, denoted by an ordered1 set
M = {x1, x2, . . . , xm}.

– Each message xi has qi binary bits, denoted by xi =
[xi[1], xi[2], . . . , xi[qi]], where each bit xi[·] is drawn
from an independent and uniform distribution over
{0, 1}.

• S senders: each sender s ∈ {1, 2, . . . , S} knows a subset
of the messages, denoted by an ordered1 subsetMs ⊆M.

• n receivers: each receiver r ∈ {1, 2, . . . , n}
– knows an ordered1 subset of the messages a priori,
Kr ⊂M, and

1The elements are ordered in increasing indices.

2

Senders

Receivers

K1 = {x1}

M1 = {x1, x3, x4} M2 = {x2, x3} M3 = {x4}

K1 = {x3}K1 = {x2} K1 = {x4}

W1 = {x2} W2 = {x1} W3 = {x2, x4} W4 = {x2, x3}

Knows

Wants

c1(M1) c2(M2) c3(M3)

Fig. 1. The multi-sender multicast single-uniprior index coding: We consider
distributed-like settings where each sender s is limited to know a subsetMs of
the message setM. Also, we consider a multicast setup where each receiver r
knows a single unique message xr a priori, and wants a subset of messages
Wr ⊂M. Each sender s broadcasts cs to all receivers noiselessly. The aim
is to find the minimum aggregated codelength |c1|+ |c2|+ |c3|.

– wants/requests an ordered1 subset of the messages,
Wr ⊆M.

Figure 1 depicts an example of a multi-sender single-uniprior
index-coding instance, where Ki = {xi}.

Without loss of generality, we assume that Wr ∩Kr = ∅ for
any r, and that

⋃S
s=1Ms =M, i.e., each message is available

at some sender(s).
We define a multi-sender index code for the above setup:
Definition 1 (Multi-Sender Index Code): An index code for

an index-coding instance consists of
1) an encoding function for each sender s ∈ {1, 2, . . . , S},

Es : {0, 1}
∑

i:xi∈Ms
qi 7→ {0, 1}`s ,

2) a decoding function for each receiver r ∈ {1, 2, . . . , n},

Dr : {0, 1}
∑S

s=1 `s+
∑

i:xi∈Kr
qi 7→ {0, 1}

∑
i:xi∈Wr

qi ,

such that Wr = Dr(E1(M1), E2(M2), . . . , ES(MS),Kr) for
each receiver r.

This means each sender s encodes its known messages into
an `s-bit sub-codeword. The sub-codewords of all senders are
given to all receivers. The total number of transmitted bits
is ˜̀,

∑S
s=1 `s, which is the index codelength. We seek the

optimal (i.e., the minimum) index codelength, denoted by ˜̀∗,
as well as index codes with the optimal length. If there is only
one sender, S = 1, we simplify the notation by denoting the
optimal index codelength as `∗.

The case S = 1 reduces to the single-sender index-coding
problem studied in many works [1]–[7], [11]–[24]. Clearly, for
the same receiver setting {Wr,Kr}nr=1, a multi-sender index
code for any S > 1 case will also be a code for the single-
sender S = 1 case. This is because, by definition, the only
sender in the single-user case, who knows all the messages,
can transmit any multi-sender index code. But the converse
is not true. So, techniques for the single-sender case do not
straightforwardly apply to the multi-sender case.

For both the single-sender and the multi-sender index-
coding problems, we assume that each sender knows which
messages (not the message content) each receiver knows, Kr,
and requests, Wr; and which messages each sender has, Ms.

This can be achieved by having the nodes to communicate (the
message-availability and message-request information) prior
to index coding. Under such scenarios, index coding is useful
if the messages are sufficiently long such that the overhead
incurred during the prior communication is negligible.2 In
some communication scenarios, side information is strategically
placed at the receivers (for example, data pre-fetching or
caching [25]), and the messages in the senders’ storage are
populated according to their geographical locations. In such
cases, the senders can be informed of all message indices in
Kr, Wr, and Ms.

If we set the number of senders to one, S = 1, and the
messages to be of equal length, qi = q for all i, the optimal
normalized index codelength—over all index codes and all
message lengths—is commonly known as the optimal broadcast
rate [4]:

β , inf
q

`∗

q
= lim

q→∞
`∗

q
codeword length per message length.

(1)
The second equality is due to the sub-additivity property of
`∗ [12].

A. Terminology

We will represent index-coding instances by graphs, and
derive bounds on `∗ by executing graph operations. We will
use common graph terminology: A directed path of length L
from vertex v0 to vertex vL consists of the following (L+ 1)
distinct vertices (except possibly the first and last) and L
arcs: {v0, (v0 → v1), v1, (v1 → v2), . . . , (vL−1 → vL), vL}.
A cycle is a path with the same first and last vertices. A
strongly connected component (SCC) of a graph is a maximal
subgraph such that for any vertex pair (i, j) in the subgraph,
there is a directed path in the subgraph from i to j, and another
from j to i. A trivial SCC is an SCC with only one vertex.
A leaf vertex in a graph has no outgoing arcs. Similarly, a
leaf non-trivial SCC is an SCC with two or more vertices,
in which there is no arc from any vertex in the SCC to any
vertex outside the SCC. In other words, for each vertex in the
SCC, its out-neighbors are all vertices in the SCC. A vertex j
is a predecessor of vertex i if and only if there is a directed
path from j to i. A path on an undirected graph is similarly
defined with arcs replaced by edges. A subgraph is connected
if there is a path within the subgraph from any vertex to any
other vertex. A tree is a connected undirected subgraph with
no cycle.

III. INDEX-CODING CLASSIFICATION AND GRAPHICAL
REPRESENTATION

A single-sender instance is fully described by the message
lengths {qi}mi=1 and the receiver setting {Wr,Kr}nr=1. For the
multi-sender extension, we further require the sender setting
{Ms}Ss=1.

2For simplicity, in the multi-sender section of this paper, we assume that
each message consists of a single bit. However, all proofs are also valid even
when each message consist of q bits, for any positive integer q.

3

A. Classification of index-coding instances based on the
receiver setting

We first consider the single-sender setup, and categorize the
instances as follows:

1) Information flow: We classify different types of infor-
mation flow from the sender to the receivers. We say that an
index-coding instance is unicast if

Wi ∩Wj = ∅, ∀i 6= j, (2)

meaning that each message can be requested by at most one
receiver. In addition, we say that the instance is single-unicast
if, in addition to (2), we also have that |Wi| = 1 for all i,
meaning each receiver requests exactly one message—but the
message may consist of multiple bits.

Note that any unicast instance can be recast as a single-
unicast instance [13]. Suppose that a receiver i wants two
messagesWi = {x1, x2}, and knows Ki. As far as index codes
are concerned, we can replace receiver i by two receivers i′

and j′, both knowing the same set Ki, and each wanting a
single message, i.e., x1 and x2 respectively. We can further
split the receivers in a similar manner so that each message
contains only a single bit.

Unicast instances were investigated by Bar-Yossef et al. [1],
Lubetzky and Stav [7], Shanmugam et al. [18], [19], Arbabjol-
faei et al. [3], [20], [23], Yu and Neely [6], Wong et al. [26],
Ebrahimi and Siavoshani [21], and Ong et al. [5], [22], [24].

2) Side information: We next classify different types of
side information at the receivers. We say that an index coding
instance is uniprior if

Ki ∩ Kj = ∅, ∀i 6= j, (3)

meaning that each message is known a priori to at most one
receiver. In addition, we say that the instance is single-uniprior
if, in addition to (3), we also have that |Ki| = 1 for all i,
meaning that each receiver knows exactly one unique message
a priori.

Unlike unicast instances, single-uniprior instances do not
subsume all uniprior instances. A receiver who knows {x1, x2}
is not equivalent to two receivers each knowing only one of
them.

Unicast uniprior instances were investigated by Neely et
al. [2].

With the above terminology, we call index-coding instances
with no restrictions on Wi and Ki multicast multiprior
instances. Multicast multiprior instances were investigated by
Blasiak et al. [4], Alon et al. [12], Shanmugam et al. [20],
Tehrani et al. [16], and Neely et al. [2].

B. Graphical representation of the receiver setting

Existing works on index coding focused on the single-sender
case, and many used the following graphical representations
to capture the receivers’ side information and requests.

1 4

3 2

(a) Side-information graph G1

4

2 3

5

16

(b) Side-information graph G2
Fig. 2. Incorrect side-information graphs for the uniprior instance in Example 1

1) Unicast multiprior (or simply unicast): As mentioned
above, any unicast instance can be converted into an equivalent
single-unicast instance. Without loss of generality, we can
assume exactly n receivers and n messages, as message not
requested by any receivers can be removed. Single-unicast
index-coding instances are commonly represented by side-
information graphs [1] with n vertices {1, 2, . . . , n}, where
an arc exists from vertex i to vertex j if and only if receiver i
knows the message requested by receiver j.

2) Unicast uniprior: The class of index-coding instances
with unicast and uniprior was investigated by Neely et al. [2],
where each message bit is (i) known to only one receiver, and
(ii) requested by only one receiver. Neely et al. represented
this class by a weighted compressed graph, where each vertex
represents a receiver, and an arc of weight q exists from vertex
i to j if and only if receiver j wants q messages known to
receiver i.

Although a unicast instance can be recast into a single-
unicast instance, not all unicast uniprior instances can be recast
into single-unicast uniprior instances. This is because if we
split a receiver, there will be more than one receivers knowing
the same message (i.e., the instance is no longer uniprior).

3) Multicast multiprior: This is the most general class of
the index-coding instances, where there is no restriction on Wi

and Ki. To completely capture the information in both Wi and
Ki, Neely et al. [2] proposed a bipartite-graph representation,
where there are n receiver vertices, {r1, r2, . . . , rn}, and m
messages vertices, {x1, x2, . . . , xm}. An arc from ri to xj
exists if and only if receiver i wants xj , and arc from xi to
rj exists if and only if receiver j knows xi. Blasiak et al. [4]
and Alon et al. [12] used hypergraphs to represent multicast
multiprior instances.

4) Multicast single-uniprior (or simply single-uniprior):
This is the class of index-coding instances considered in this
paper. Without loss of generality, we consider n receivers and
n messages. This subsumes the case where a message xj is not
known to any receiver. To see this, add a dummy receiver n+1
who knows xj but does not want any message. Clearly, adding
this receiver does not change the problem.

Side-information graphs used for single-unicast instances
cannot capture all single-uniprior instances. We illustrate this
using the example below:

Example 1: Consider the following uniprior instance:
K1 = {x2},K2 = {x1},K3 = {x4},K4 = {x3},W1 =
{x3},W2 = {x4},W3 = {x1, x2},W4 = {x1, x2}, where
each message xi contains one bit. We will see later (Corollary 1)
that the optimal index codelength for this instance is three
bits. If we apply the rule for constructing side-information
graphs that says “i → j exists if receiver i knows the
message requested by receiver j”, we get graph G1 shown

4

in Figure 2. For a unicast instance represented by G1, the
optimal codelength is two bits (using clique cover [11]).
Thus, G1 incorrectly represents the uniprior instance described
here. However, since receivers 3 and 4 request multiple
messages, we can obtain an equivalent instance by splitting
receiver 3 to two receivers (say, 3 and 5), each knowing
the same message but requesting a different message: K3 =
{x4},K5 = {x4},W3 = {x1},W5 = {x2}. We similarly split
receiver 4: K4 = {x3},K6 = {x3},W4 = {x1},W6 = {x2}.
Constructing a side-information graph for this equivalent
instance, we get G2 in Figure 2. But for a unicast instance
represented by G2, the optimal codelength is four bits (again,
using clique cover). Thus G2 again incorrectly represents the
uniprior instance in this example. The reason is that side-
information graphs are not able to capture multiple receivers
requesting a same message.

Instead, we propose information-flow graphs with n weighted
vertices. Without loss of generality, let Ki = {xi} for all
receiver i ∈ {1, 2, . . . , n}. An arc exists from vertex i to
vertex j if and only if node j wants the message known to
receiver i, i.e., xi ∈ Wj . The weight of vertex i is qi, which is
the number of bits in message xi. Although a uniprior instance
can be represented by either a hypergraph or a bipartite graph,
using the information-flow graph results in a smaller (compare
to the bipartite graph) and simpler (a directed graph instead of
a hyper graph) graph.

C. Graphical representation of the sender setting

When there are multiple senders, we need to represent {Ms}
in addition to {qi,Kr,Mr}. We propose to represent {Ms}
using an n-vertex undirected message graph, denoted by U . An
edge between vertices i and j on U (denoted by (i, j)) exists if
and only if messages xi and xj are known to the same sender,
i.e., i, j ∈Ms for some s.

In this paper, we will consider multi-sender single-uniprior
instances each described by an information-flow graph G and
a message graph U , both defined on the same set of vertices
V = {1, 2, . . . , n}. We denote by ˜̀∗(G,U) the optimal index
codelength for the instance represented by (G,U).

Note that an edge (i, j) in U does not indicate which
sender(s) owns both the messages (i.e. the set of s such that
i, j ∈ Ms). This ambiguity will not affect the techniques
developed in this paper. In fact, for some cases, this is sufficient
to derive the optimal index codelength. However, we will
point out in the conclusion the existence of an instance where
resolving this ambiguity can further improve our results.

IV. EXISTING RESULTS AND OUR CONTRIBUTIONS

In this section, we will survey existing results on `∗ for the
single-sender problem. We will then review related works on
multiterminal networks with side information that have settings
similar to that in the multi-sender index-coding problem. Lastly,
we present the main results of this paper.

A. Existing results for single-sender index coding

Recall that any unicast instance can be first converted to
an equivalent single-unicast instance with binary messages

and then represented by a side-information graph. For binary
messages, Bar-Yossef et al. [1] found the optimal index
codelength `∗ for all acyclic side-information graphs. Suppose
that a side-information graph has cycle(s) and is symmetrical
(meaning that for every arc from vertex i to vertex j, there
is another arc from vertex j to vertex i). For this special
case, the directed side-information graph can be converted to
an undirected graph where an edge between vertices i and j
represent the arcs in both directions. Bar-Yossef et al. solved all
unicast index-coding instances with the following undirected
side-information graphs: (i) perfect graphs, (ii) odd holes with
five or more vertices, and (iii) odd anti-holes with five or more
vertices.

Arbabjolfaei et al. [3] found `∗ for all unicast instances up
to five receivers. They used random-coding arguments to prove
achievability. Later, Ong [5] showed that binary linear codes
are sufficient to achieve `∗ for all unicast instances up to five
receivers. Blasiak et al. [4] and Thapa et al. [24] found `∗ for
certain special classes of graphs.

Also for unicast instances, using the bipartite-graph repre-
sentation, Yu and Neely [6] showed that if the graph is planar,3

then `∗ can be found using linear programming (solutions not
in closed form). This class of unicast instances subsume all
unicast uniprior instances up to four receivers as special cases.
Neely et al. [2] found `∗ for unicast uniprior instances if the
weighted compressed graph contains only arc-disjoint cycles.

For the most general multicast multiprior case, Neely et
al. [2] found `∗ for all acyclic bipartite graphs.

It has been shown [14] that (i) the general multicast
multiprior index-coding problem is NP-hard, and (ii) the
multicast (non-unicast) index-coding problem is even NP-hard
to approximate.

For all the above-mentioned classes of index-coding instances
where `∗ has been found, linear index codes are optimal.
However, for some single-unicast instances, Lubetzky and
Stav [7] showed that non-linear index codes can outperform
linear codes.

B. Related works on multiterminal networks with side infor-
mation

In the literature, a problem setup related to the multi-sender
index-coding problem is multiterminal networks where a set of
clients exchange messages directly through a shared noiseless
medium. The aim is to minimize the total transmission cost
(e.g., total number of transmissions) while satisfying all clients’
requirements. This problem can be viewed as a special case of
the multi-sender index-coding problem where for each client,
there is a sender having the same messages.

Ozgul and Sprintson [27] considered this setup where each
client requests all the messages it does not know. They used
multiple rounds of random linear coding to achieve the optimal
transmission cost with high probability.

Hou, Hsu, and Sprintson [28] considered the same setup
where each client requests one message (i.e. unicast), and
it is selfish in the sense that it tries to minimize its own

3A graph is planar if it can be drawn on a two-dimensional plane in such a
way that its edges intersect only at their endpoints.

5

Sender(s) Bound Section Theorem Techniques Bound tight?
single lower V-A Theorem 1 pruning yes
single upper V-B Theorem 2 cyclic codes on leaf SCCs yes

multiple lower VI Theorem 5 pruning and appending for some cases
multiple upper VII Theorem 6 cyclic codes on leaf SCCs and trees for some cases

TABLE I
A SUMMARY OF OUR TECHNIQUES USED TO OBTAIN DIFFERENT BOUNDS IN THIS PAPER

si
de

in
fo

rm
at

io
n

(a
tr

ec
ei

ve
rs

)

information flow (from sender)

single-sender unicast (partially solved [1,3–6,24])

single-sender unicast uniprior (partially solved [2,6])

single-sender multicast multiprior (partially solved [2])

single-sender and multi-sender (with no common message)

si
ng

le
un

ip
ri

or

m
ul

tip
ri

or

unicast

single
sender

multicast
multi-
sender
(no common
message)

multi-
sender
(general)

single-uniprior (completely solved in this paper)

multi-sender single-uniprior (partially solved in this paper)

un
ip

ri
or

message configuration (at sender(s))

Fig. 3. Summary of results in this paper and existing results. Note that any unicast instance can be recast as a single-unicast instance. The relative volumes are
not indicative of the number of instances in the classes.

transmissions. They proposed a game-theoretic algorithm (via
bidding) for transmission, and numerically showed that their
algorithm is close to optimal.

Ji, Caire, and Molisch [29] also considered this setup where
the side information of the clients (which admits a fixed number
of bits) can be chosen, but the requests (also with a fixed
number of bits) are random variables. They obtained an upper
bound and a lower bound (on the optimal rate, i.e., total
transmitted bits per side-information bits per client) within
a multiplicative gap, by carefully designing the client’s side
information, such that all requests can be fulfilled by their
transmission scheme.

Unlike the setup considered by Ji et al., the setup in this
paper does not allow one to design the side information of the
receivers. Also, unlike the setups by Ozgul and Sprintson, and
Hou et al., we consider all possible message requests by the
receivers.

C. Our contributions

1) Single-sender: In this paper, we solve all single-uniprior
(including unicast and multicast) index-coding problems, and
show that the solution can be found in polynomial time in the
worst case.

More specifically, we characterize the minimum codelength
`∗ of any single-uniprior index-coding instance in terms of
the number of leaf non-trivial strongly connected components
(SCC) of the corresponding information-flow graph G. To this
end, we design a pruning algorithm that removes arcs from G
to “destroy” all leaf non-trivial SCCs, to get a graph through
which we derive a lower bound on `∗. By carefully pruning
G, we show that the lower bound is achievable using linear

cyclic codes. Hence, we incidentally show that linear index
codes are optimal for all single-uniprior instances. This is in
stark contrast to the single-unicast instances where non-linear
codes can outperform linear codes [7].

For the rest of this paper, when we say leaf SCCs, we simply
mean leaf non-trivial SCCs.

2) Multi-sender: For multi-sender single-uniprior instances,
we construct upper and lower bounds on the optimal index
codelength based on the information-flow graph G and the
message graph U . For the lower bound, we construct an
algorithm that not only prunes G (using the aforementioned
pruning algorithm), but also adds arcs, edges, and vertices, and
derive a lower bound on ˜̀∗ through the resultant graph. For
the upper bound, we first define a special type of tree, and we
count the number of such trees that we can fit into the graph.
We then propose a coding scheme for each tree and some leaf
SCCs to obtain a linear index code.

We will show that our upper and lower bounds match for
a class of multi-sender single-uniprior instances. This class
includes as a special case the scenario where no two senders
know the same message, i.e., Ms ∩Mt = ∅ for all s 6= t.

3) Summary of results and techniques: Table I shows the
sections in which we derive different bounds and the techniques
involved. Figure 3 summarizes our results in relation to other
results.

V. THE SINGLE-SENDER SINGLE-UNIPRIOR CASE

In this section we focus on the single-sender single-uniprior
case. We will propose a pruning algorithm to obtain a lower
bound on `∗, and then construct a linear index code that
achieves this lower bound.

6

For the single-uniprior case, we work on the information-
flow graph, denoted by G = {V,A}, where V = {1, 2, . . . , n}
is the set of vertices, and A is the set of arcs. This models an
index-coding instance where there are n receivers, and each
receiver i knows xi a priori and requests {xj : (j → i) ∈ A}.
For the remaining of this paper, we refer to the message xi,
known to receiver i, simply as the message of vertex i. Let
`∗(G) denote the optimal index codelength for a single-sender
uniprior instance represented by G.

A. Lower bound

1) Useful lemmas: We first establish a few lemmas, which
we will use to establish our lower bound.

Lemma 1: Each receiver i ∈ V must be able to decode the
messages of its predecessors in G.

Proof: An index code always allows receiver i to decode
xj if an arc (j → i) exists. In the single-uniprior instance, xj
is all the side information receiver j has. Therefore, receiver i
must also be able to decode all the messages that receiver j
is able to decode, i.e., receiver i can decode all Wj = {xk :
(k → j) ∈ A}. Further chaining of this argument proves
that receiver i must be able to decode the messages of the
predecessors of vertex i.

Lemma 2: Every receiver can decode the messages of all
predecessors of any leaf vertex, even without utilizing its prior
message.

Proof: Consider any leaf vertex i, its prior message xi
is not requested by any receiver. So, we can arbitrarily set
xi = 0 without affecting the decoding of any receiver, or the
codelength. With this, any receiver (even one without any side
information) knows xi = 0, and, by Lemma 1, it must be able
to decode all predecessors of the leaf vertex i. Since the choice
of the leaf vertex was arbitrary, we conclude the proof.

2) A simple lower bound: Define the set of leaf vertices in
G as L(G). We have the following from Lemma 2:

Lemma 3: For any graph G, we have

`∗(G) ≥
∑

i: i is a predecessor of some vertex in L(G)
qi (4)

Proof: Denote the messages of all predecessors of all leaf
vertices by X , {Xi : i is a predecessor of some vertex in
L(G)},4 and the index code by C. It follows from Lemma 2
that any receiver can decode X from C, i.e., H(X|C) = 0,
or H(X,C) = H(C), where H(·) is the entropy function.

It follows that `∗(G) ≥ H(C) = H(X,C) ≥ H(X)
(a)
=∑

i:i is a predecessor of some vertex in L(G)H(Xi)
(b)
= Q, where Q is

the right-hand side of (4). Equality (a) is derived because the
messages are independent, and (b) is derived because each
message bit is uniformly distributed.

The lower bound in Lemma 3 is not useful when the graph G
contains not many predecessors of leaf vertices. For example,
the right-hand side is zero if G is a cycle. In light of this,
we “process” the graph to obtain a better lower bound in the
following subsection.

4We use upper-case letters to denote random variables.

3) A better lower bound: We observe the following:
Lemma 4: Let G = {V,A} and G′ = {V,A′}, where A′ ⊆
A. We have that

`∗(G) ≥ `∗(G′). (5)

Proof: Removing arcs in an information-flow graph
reduces decoding requirements, while maintaining the prior
messages of each receiver. This means any index code for G
is also an index code for G′.

Combining Lemmas 3 and 4 gives the following lower bound:
Lemma 5: Given any G = {V,A}, the optimal index

codelength of a single-sender single-uniprior index-coding
instance represented by G is lower bounded as

`∗(G) ≥ max
G′={V,A′} s.t. A′⊆A

∑
i: i is a predecessor of some vertex in L(G′)

qi.

(6)
The lower bound in Lemma 5 involves maximizing

∑
qi

over all arc-removed subgraphs G′. We now present a way to
optimally remove arcs, to attain the right-hand side of (6). To
this end, we propose an algorithm to remove certain arcs to
obtain a lower bound. Then, in the next section, we will show
that this lower bound is indeed achievable, thereby proving
that the bound obtained using this algorithm is tight, i.e., that
it attains the right-hand side of (6).

We first define the following:
Definition 2: A leaf SCC is a non-trivial5 SCC that has no

outgoing arc (i.e., from a vertex in the SCC to a vertex outside
the SCC).

We now present a lower bound, which is essentially Lemma 5
evaluated with a specific G′:

Theorem 1 (Single-sender: lower bound): The optimal index
codelength of a single-sender single-uniprior index-coding
instance is lower bounded as

`∗(G) ≥
∑
k∈V

qk −
∑

i∈L(G)
qi −

∑
VleafSCC(j)∈V

min
a∈VleafSCC(j)

qa, (7)

where V , {VleafSCC(1),VleafSCC(2), . . . } is the set of all leaf
SCCs in G.

We defer the proof of Theorem 1 to Section V-A4, after
introducing a pruning algorithm.

Remark 1: The lower bound here is more general than the
result in our previously-published conference paper [15], for
which the messages are restricted to be the same size.

4) Proving Theorem 1 using a pruning algorithm: We start
with the following definitions:

Definition 3: A vertex is said to be grounded if it is either
a leaf vertex, or a predecessor of some leaf vertex.

Definition 4: A graph is said to be grounded if every vertex
in the graph is grounded.

Lemma 6: The two statements below are equivalent for any
directed graph G:

1) G has no leaf SCC.
2) G is grounded.

Proof: See Appendix A.
We now propose an arc-removing algorithm, called the

pruning algorithm, which we will use to prove Theorem 1.

5Recall that a non-trivial SCC has two or more vertices.

7

Algorithm 1: The Pruning Algorithm
input : A directed graph G = {V,A} with vertex

weights {qi}i∈V
output : A grounded directed graph

foreach Leaf SCC, say GleafSCC = {VleafSCC,AleafSCC} ⊆ G
do

Arbitrarily select a vertex with the least weight, i.e.,
any i ∈ argmina∈VleafSCC

qa;
Remove all outgoing arcs from vertex i, i.e., all
(i→ k) ∈ A;

Executing the pruning algorithm gives the following result:
Lemma 7: Consider a graph G = {V,A}. Let the resultant

graph after running the pruning algorithm be Gp = {Vp,Ap}.
We have

Vp = V, (8)
Ap ⊆ A, (9)∑
i: i is a predecessor of some vertex in L(Gp)

qi

=
∑
k∈V

qk −
∑

i∈L(G)
qi −

∑
VleafSCC(j)∈V

min
a∈VleafSCC(j)

qa. (10)

Proof: Since the algorithm only removes arcs, we have
(8) and (9).

We now show that Gp has no leaf SCC. Consider a leaf SCC
in G for which vertex i is selected and all its outgoing arcs are
removed. By definition, every vertex in the SCC has a path to
i. After the foreach iteration, i is made a leaf vertex, and all
vertices in the leaf SCC are therefore grounded. Also, as all
SCCs are vertex disjoint, this iteration destroys one leaf SCC
and does not create any new leaf SCC. When the algorithm
terminates, Gp has no leaf SCC, and it follows from Lemma 6
that Gp is grounded.

Since Gp is grounded, each non-leaf vertex is a predecessor
of some leaf vertex. This means∑

i: i is a predecessor of some vertex in L(Gp)

qi =
∑

i∈V\L(Gp)

qi

=
∑
k∈V

qk −
∑

i∈L(Gp)

qi.

(11)

Recall that V , {VleafSCC(1),VleafSCC(2), . . . } is the set of
all leaf SCCs in G. These leaf SCCs are vertex-disjoint by
definition. In Algorithm 1, one vertex (one with the least
weight) in each leaf SCC in G is made a leaf vertex. So,

∑
i∈L(Gp)

qi =
∑

i∈L(G)
qi +

∑
VleafSCC(j)∈V

min
a∈VleafSCC(j)

qa. (12)

Substituting (12) into (11), we have (10).
Proof of Theorem 1: Combining Lemmas 5 and 7, we

have Theorem 1.
Remark 2: (Complexity of the pruning algorithm) All SCCs

in a graph can be found in linear time in |V| + |A| (see,

for example, the Kosaraju-Sharir algorithm [30] or Tarjan’s
algorithm [31]). To check if an SCC is a leaf SCC, we check
whether all out-neighbors of each vertex in the SCC is in
the same SCC. This takes at most |A||V| checks. Finding the
vertex with the minimum message length in a leaf SCC can be
done by a sorting algorithm with a worst-case complexity of
|V| log |V|. So, the pruning algorithm runs in O(|V|3) in the
worst case.

The main idea behind our lower bound here is that removing
some requests by a receiver (i.e., reducing the sets {Wr})
cannot increase the optimal index codelength. This corresponds
to removing arcs in the information-flow graph. A similar—
but different—concept was used to derive a lower bound for
the unicast index-coding instances (which are represented by
side-information graphs), namely, the maximum-acylic-induced-
subgraph (MAIS) lower bound [1], [2]. The main idea behind
the MAIS bound is that removing messages (i.e., reducing M
and adjusting {Kr,Wr} accordingly) from the system cannot
increase the optimal index codelength. This corresponds to
a vertex-induced subgraph. While the MAIS lower bound is
in general not tight for single-sender unicast index-coding
instances [4], we will see that our proposed lower bound based
on removing arcs is tight for all single-sender uniprior index-
coding instances.

B. Upper bound (achievability): cyclic codes

In this subsection, we construct linear index codes that
achieve the lower bound given in Theorem 1. Although the
lower bound is calculated based on the pruned graph Gp, for
achievability, we need to design index codes for the original
graph G. It turns out that by coding on leaf SCCs in G, we
can construct index codes that attain the lower bound.

It is easier to discuss the lower bound, i.e., the right-hand side
of (7), in terms of a trivial index code and “savings”. To see this,
we compare it with a trivial index code that simply transmits∑
k∈V

qk−
∑

i∈L(G)
qi bits, which are the uncoded messages of the

non-leaf vertices (since, by definition, the messages of the leaf
vertices are not requested by any receiver). We will further
show that an extra savings of

∑
VleafSCC(j)∈V

min
a∈VleafSCC(j)

qa bits is

possible—a consequence of the leaf SCCs. This corresponds
to a savings, over the trivial index code, of min

a∈VleafSCC
qa bits for

each leaf SCC VleafSCC ∈ V.
We will use cyclic codes, defined below, to realize the

required savings:
Definition 5 (Cyclic codes): Consider n q-bit messages,
{x1, x2, . . . , xn}. A cyclic code is a length q(n− 1)-bit code,
constructed as follows:

x1 ⊕ x2, x2 ⊕ x3, . . . , xn−1 ⊕ xn,

where ⊕ bit-wise XOR.
Theorem 2 (Single-sender: upper bound): The optimal index

codelength of a single-sender single-uniprior index-coding
instance is upper bounded as

`∗(G) ≤
∑
k∈V

qk −
∑

i∈L(G)
qi −

∑
VleafSCC(j)∈V

min
a∈VleafSCC(j)

qa. (13)

8

Proof of Theorem 2: For each non-leaf vertex i that does
not belong to any leaf SCC, we send xi uncoded.

For vertices in leaf SCCs, we construct the following code:
Consider a leaf SCC in G, and let its vertices be VleafSCC =
{1, 2, . . . , v}. For now, let us first assume all messages {xi}vi=1

in the leaf SCC are of equal length, say q bits. Then construct
the following cyclic code:

x1 ⊕ x2, x2 ⊕ x3, . . . , xv−1 ⊕ xv. (14)

Note that for any i ∈ VleafSCC, receiver i
• can decode all messages in VleafSCC from (14) and its side

information xi,
• can also decode the messages of all non-leaf vertices not

in any leaf SCC (as these messages are sent uncoded),
and

• does not request any messages in other leaf SCCs (due
to the definition of leaf SCC).

Repeating the above cyclic code for each leaf SCC, we
satisfy the decoding requirements for all receivers in all leaf
SCCs. Also, any receiver not in any leaf SCC can also decode
its requested messages, as these messages are sent uncoded.
Note that, by definition, messages in any leaf SCC are not
requested by any receiver outside the leaf SCC.

To generalize the above to non-equal-length messages of qi
bits for each vertex i, simply form (14) by substituting each xi
with its first qmin bits, where qmin is the shortest message length
in the leaf SCC, i.e., qmin = min

1≤a≤v
qa. Then the total number

of coded bits in (14) is (v−1)qmin bits. We send the remaining
bits

∑v
i=1 qi−vqmin uncoded. Hence, the total savings per leaf

SCC is qmin.
Repeating this for each leaf SCC, we save a total of∑

VleafSCC(j)∈V
min

a∈VleafSCC(j)
qa bits for the entire graph G.

Remark 3: The cyclic code (14) used in the proof of
Theorem 2 can be derived from the partial-clique-cover
scheme [11] (originally proposed for unicast index coding).
Consider (i) v messages {xi}vi=1 =M each taking values from
a finite field F; (ii) a set of receivers {1, 2, . . . , n}, where each
receiver i ∈ {1, 2, . . . , n} knows a priori at least k messages in
M, i.e., |Ki ∩M| ≥ k. The partial-clique-cover scheme gives
a codeword based on minimum-distance-separable codes with
the following properties: (a) it consists of (v − k) finite-field
symbols; (b) it simultaneously lets each receiver decode all
messages in M. For a leaf SCC in a single-uniprior index-
coding problem, we have k = 1. By setting F = {0, 1}, and
appropriately constructing a minimum-distance-separable code,
one can obtain (14) for q = 1 (a codeword of (v − 1) bits),
which allows all receivers in the SCC to decode all messages
in the SCC. The multiple-bit version of (14) can be obtained
by concatenating q > 1 copies of the binary codewords.

C. The optimal index codelength

Combining Theorems 1 and 2, we have the following:
Theorem 3: The optimal index codelength of a single-sender

single-uniprior index-coding instance is

`∗(G) =
∑
k∈V

qk −
∑

i∈L(G)
qi −

∑
VleafSCC(j)∈V

min
a∈VleafSCC(j)

qa. (15)

(a) (b)

1 2

3

4

5

1 2 2

2 2

1 2

3

4

5

1 2 2

2 2

G G′

Fig. 4. An example of a single-uniprior index-coding instance: (a) Graph G
is an information-flow graph representing the problem instance. (b) Graph G′
is the resultant graph after running the pruning algorithm on G

Furthermore, linear codes can achieve the optimal index
codelength.

Example 2: We illustrate how to obtain the optimal code-
length and an optimal code for an index-coding instance
with one single-bit message (i.e., x1 = x1[1]), four two-bit
messages (i.e., xi = [xi[1], xi[2]] for i ∈ {2, 3, 4, 5}), and five
receivers. Each receiver i knows Ki = {xi}, and the receivers
each request the following messages: W1 = {x2, x3},W2 =
{x1, x3, x4},W3 = {x1, x2},W4 = ∅,W5 = {x4}. This
problem can be represented by a graph G depicted in Figure 4.
It contains one leaf SCC with vertices VleafSCC = {1, 2, 3}, in
which message x1 has the shortest length of one bit. There
is only one leaf vertex in G, which is node 5. Theorem 1
gives a lower bound `∗(G) ≥ 9 − 2 − 1 = 6. To construct
an optimal index code, we form a two-bit cyclic code
(x1[1] ⊕ x2[1], x2[1] ⊕ x3[1]) for the leaf SCC in G, and
four uncoded bits for the remaining messages in the leaf
SCC and the messages of the other the non-leaf vertices
(x2[2], x3[2], x4[1], x4[2]). Here, `∗(G) = 6.

For the special cases where all messages are binary, Theo-
rem 3 simplifies to the following:

Corollary 1: The optimal index codelength of a single-sender
single-uniprior index-coding instance with binary messages is

`∗(G) = n− |L(G)| −Nleaf(G), (16)

where |L(G)| is the number of leaf vertices in G and Nleaf(G)
is the total number of leaf SCCs in G.

VI. THE MULTI-SENDER CASE: A LOWER BOUND

In this section, we will modify the pruning algorithm to
include information from U , and further propose an appending
step to modify the graph G, based on which we derive a lower
bound for the multi-sender case.

For simplicity and clarity, we will only consider the case
where all messages xi are binary. This means all vertices in
the information-flow graph G all have weight one. One can
extend the ideas developed in this section to the more general
case of unequal message sizes.

A. The single-sender bound may be loose for multi-sender

Denote a multi-sender instance by (G,U). The optimal
codelength ˜̀∗(G,U) clearly is lower bounded by `∗(G) for
the single-sender case, because a single sender who knows
all the messages can also send any multi-sender index code.
We also know from Lemma 3 that, for a graph G with binary
messages, `∗(G) is lower bounded by the number of vertices

9

that are each a predecessor of some leaf vertex, denoted by
Vpredec(G). This gives

˜̀∗(G,U) ≥ `∗(G) ≥ Vpredec(G). (17)

For the single-sender problem, we used the pruning algorithm
to prune all leaf SCCs to get a grounded graph Gp. As pruning
does not increase the optimal codelength (see Lemma 4),
we have the following single-sender bound for multi-sender
instances:

˜̀∗(G,U) ≥ `∗(G) ≥ `∗(Gp) ≥ Vpredec(Gp) = Vout(Gp), (18)

where Vout(G) denotes the total number of non-leaf vertices in
G. The equality above is derived as Gp is grounded.

However, the single-sender lower bound may be loose due
to the sender constraints specified by the undirected graph U
(see its definition in Section III-C). Consider Example 2 again,
and suppose that there are five senders, where each sender
i ∈ {1, 2, . . . , 5} has only xi. Under this constraint, it is not
possible to transmit x1[1] ⊕ x2[1], as the messages belong
to different senders. The minimum codelength for this case
is seven bits—sending [x1, x2, x3, x4] uncoded. On the other
hand, if some sender has {x1, x2} and another has {x2, x3},
then the six-bit lower bound is tight using the coding scheme
mentioned in the example.

B. A tighter bound by appending

We will propose a new algorithm that gives a better lower
bound. Our new algorithm produces a resultant graph, say G†,
with a possibly higher number of Vpredec(G†) > Vpredec(Gp),
where Gp is the resultant graph after running Algorithm 1.
To obtain the desired G†, we propose a new technique that
appends some leaf SCCs, by adding an outgoing arc from each
of these leaf SCC to another vertex or a newly introduced
grounded vertex. In the new algorithm, we iterate on the leaf
SCCs (either pruning or appending) until we get a grounded
information-flow graph G†.6 From the resultant G†, we get

˜̀∗(G†,U†) ≥ `∗(G†) ≥ Vpredec(G†) = Vout(G†), (19)

for all U†, where the inequalities follow from (17), and the
equality is derived because G† is grounded.

To link this lower bound to the original graph (G,U), we
need to make sure that the optimal index codelength cannot
increase after each pruning/appending step. If this is satisfied,
we have the lower bound

˜̀∗(G,U) ≥ ˜̀∗(G†,U†) (20a)

≥ Vout(G†). (20b)

We aim to maximize the number of non-leaf vertices in the
resultant graph (which is grounded).

We will see that pruning reduces the number of non-leaf
vertices by one, while appending does not change the number
of non-leaf vertices. So, potentially Vout(G†) > Vout(Gp), which
means the lower bound (20b) is potentially tighter than (18).

6A lower bound based on a non-grounded resultant graph is strictly
suboptimal, because the graph must contain at least one leaf SCC, and by
pruning the leaf SCC, we can increase Vpredec(·).

We have seen in the single-sender case that (20a) is always
true if we prune all leaf SCCs. However, appending in general
increases decoding requirements, which may cause the optimal
index codelength to increase. The main challenge here is to
append certain types of leaf SCCs such that the optimal index
codelength cannot increase, i.e., (20a) holds. To this end, we
will classify leaf SCCs based on U .

C. Classifying leaf SCCs to reflect the sender setting

We now give some intuition on how we use U to classify the
leaf SCCs. Recall that U is an undirected graph where an edge
exists between vertices i and j, if and only if some sender has
both xi and xj . Connectivity in U restricts the construction of
index codes, which allows us to append some leaf SCCs. For
example, if there is no path between two vertices in U , say
vertices 1 and 2, then it turns out that we can partition any index
codeword into two sub-codewords, where one sub-codeword
is a function of only messages from a set, say M′ ⊂ M,
containing x1, and the other sub-codeword a function of the
only messages from the set M\M′, which contains x2. This,
we will show, leads to the result that any receiver can decode
all messages in a leaf SCC that contains two vertices not
connected in U . As a consequence, we can append this type
of leaf SCC, while satisfying (20a), by adding an arc from the
leaf SCC to a dummy vertex.

We will now formally classify different types of leaf SCCs
based on their connectivity in U . We first define neighboring
vertices in U . For a vertex set VS ⊆ V , we say that a vertex
i /∈ VS is a neighbor of VS if and only if there is an edge (i, v)
in U between i and some v ∈ VS.

1) Message-connected leaf SCC: A leaf SCC in G is said
to be message-connected if and only if there always
exists a path7 in U between any two vertices in the SCC,
where the path consists of vertices only in the SCC.

2) Message-disconnected leaf SCC: A leaf SCC is
message-disconnected if and only if there are two vertices
in the SCC with no path in U between them (even if the
path can contain vertices outside the SCC).

3) Semi-message-connected leaf SCC A leaf SCC that is
neither message-connected nor message-disconnected is
semi-message-connected, referred also as semi leaf SCC
for short. Here, we can always find a vertex pair, where
all paths between them must contain some vertex outside
the SCC. We further classify semi leaf SCCs:

a) Degenerated leaf SCC: A semi leaf SCC, with
vertex set VS, is said to be degenerated if and only
if we can find two vertex sets
• V inside

S ⊂ VS, which is inside the leaf SCC, and
• Voutside

S ⊆ V \ VS, which is outside the leaf SCC,
such that
• there is no edge in U between V inside

S and
VS \ V inside

S (the complement of V inside
S in the leaf

SCC),

7Recall that we use path to denote an undirected path (of edges) in U , or a
directed path (of arcs) in G.

10

message-connected message-disconnecteddegenerated V inside
S

all neighbors of V inside
S = predecessors of Voutside

S

Voutside
S

VS

Fig. 5. Classification of leaf SCCs: By definition, leaf SCCs are determined by
G (where arcs are drawn with arrows), but their various types are determined
also in accordance with U (where edges are drawn with solid lines). This
graph illustrates concurrently three leaf SCC types: (i) message-connected,
where there is a path between any two vertices through only vertices in the
SCC; (ii) message-disconnected, containing at least two vertices that cannot be
connected by any path; and (iii) semi-message-connected, where some vertices
must be connected by a path with vertices outside the SCC. The semi leaf
SCC here (with vertex set VS) is degenerated because we can find two vertex
sets, V inside

S in the leaf SCC and Voutside
S outside the SCC, such that (a) there

is no edge between V inside
S and VS \ V inside

S , (b) Voutside
S contains at most one

non-leaf vertex, and (c) all neighbors of V inside
S are predecessors of Voutside

S .

• there is at most one non-leaf vertex in Voutside
S ,

and
• every neighbor of V inside

S is either in Voutside
S , or

a predecessor (with respect to the directed graph
G) of some vertex in Voutside

S .
b) Non-degenerated leaf SCCs: A semi leaf SCC that

is not degenerated is said to be non-degenerated.
Any leaf SCC must belong to one of these four types.

Figure 5 shows examples of three types of leaf SCCs. As
cryptic as the definition of a degenerated leaf SCC may seem,
it has been carefully crafted to allow us to append it.

D. Which leaf SCCs to append and which to prune?
Recall that our lower bound is given by ˜̀∗(G,U) ≥ Vout(G†),

and we want the resultant grounded information-flow graph G†
to have as many non-leaf vertices as possible. As mentioned
before, we would prefer appending to pruning, as the latter
always reduces the number of non-leaf vertices, but the
former does not. However, for message-connected and non-
degenerated leaf SCCs, we are unable to show that appending
will not increase the optimal index codelength, as required by
(20a). In fact, appending a message-connected leaf SCC can
strictly increase the optimal index codelength, as shown by the
following example:

Example 3: Consider a single-uniprior index-coding instance,
whose information-flow graph is given by

1 2

and a sender has both the messages. Here, the graph itself
is a message-connected leaf SCC. The optimal codelength
is one, attained by x1 ⊕ x2. The single-sender lower bound
˜̀∗(G,U) ≥ 1 is tight. If we append (we will formally define the
appending step in the next section) this leaf SCC, by creating
a dummy vertex 3, and an arc (2→ 3), the resultant grounded
graph G† is

1 2 3

and we get ˜̀∗(G†,U†) ≥ Vpredec(G†) = 2. For this example,
(20a) is not true, and Vpredec(G†) is not a lower bound on
˜̀∗(G,U).

So, we will
• prune message-connected and non-degenerated leaf SCCs,

and
• append message-disconnected and degenerated leaf SCCs.
In the following three subsections, we will prove that

appending message-disconnected and degenerated leaf SCCs
indeed guarantees (20a). We will also derive the number of
non-leaf vertices after each pruning/appending step, and show
that the number of leaf SCCs that remain in the graph cannot
increase (so that our algorithm always terminates).

We will use the following notation. Let G and U be the
information-flow graph and the message graph (respectively)
before a pruning/appending step, and G′ and U ′ be the
respective graphs after the step.

1) Appending a message-disconnected leaf SCC:
Definition 6 (Appending a message-disconnected leaf SCC):

To append a message-disconnected leaf SCC (with a vertex set
VS), we add
• a dummy vertex n+ 1 in both G and U where xn+1 =

0, which is known to all receivers and is hence never
transmitted by the sender, and

• a dummy arc in G from an arbitrarily chosen vertex in the
leaf SCC to the dummy vertex, i.e., choose some v ∈ VS
and add (v → n+ 1) in G.

Proposition 1: After appending a message-disconnected leaf
SCC, we have

Nleaf(G′) = Nleaf(G)− 1, (21)
˜̀∗(G′,U ′) = ˜̀∗(G,U), (22)
Vout(G′) = Vout(G). (23)

Proof: See Appendix B.
2) Appending a degenerated leaf SCC: Recall that a semi

leaf SCC (with vertex set VS) is degenerated if and only if
we can find two vertex sets, V inside

S in the SCC and Voutside
S

outside the SCC, as per the definition given in Section VI-C.
We append a degenerated leaf SCC as follows:

Definition 7 (Appending a degenerated leaf SCC): To append
a degenerated leaf SCC, first pick any vertex in V inside

S , say
vinside. We then add an arc according to the following two
possibilities:
• Case 1: If Voutside

S contains exactly one non-leaf vertex,
add an arc from vinside to the non-leaf vertex.

• Case 2: Otherwise (all vertices in Voutside
S are leaf vertices),

add an arc from vinside to an arbitrarily chosen vertex in
Voutside

S .
Proposition 2: After appending a degenerated leaf SCC, we

have

Nleaf(G′) =
{
Nleaf(G), or (24)
Nleaf(G)− 1, (25)

˜̀∗(G′,U ′) = ˜̀∗(G,U), (26)
Vout(G′) = Vout(G). (27)

Proof: See Appendix C.

11

Is there any leaf SCC?

Pick one leaf SCC

Prune it Append it

Yes No

Yes

A grounded information-flow graph G†

An information-flow graph G

No

Is it message-connected
or non-degenerated?

Fig. 6. An algorithm that recursively prune/append leaf SCCs to produce a
grounded information-flow graph

3) Pruning a leaf SCC: The pruning step in the multi-sender
case is the same as the single-sender case. Since we assume
that all the messages are binary, we can choose any vertex
from which we prune its outgoing arcs. Formally, we have the
following:

Definition 8 (Pruning a leaf SCC): To prune a leaf SCC,
with vertex set VS, we arbitrarily select a vertex v ∈ VS, and
remove all outgoing arcs from v.

Proposition 3: After pruning a leaf SCC, we have

Nleaf(G′) = Nleaf(G)− 1, (28)
˜̀∗(G′,U ′) ≤ ˜̀∗(G,U), (29)
Vout(G′) = Vout(G)− 1. (30)

Proof: The pruning step grounds all the vertices in the leaf
SCC, and does not change the connectivity of other vertices
outside the leaf SCC. This gives (28).

As removing arcs reduces decoding requirements, any index
code for (G,U) also satisfies the decoding requirement for
(G′,U ′). So, we have (29).

As we remove all outgoing arc from a non-leaf vertex, we
have (30).

E. Constructing an algorithm by pruning and appending

We are now ready to assemble the pruning and appending
steps to form an algorithm that returns a grounded information-
flow graph G†.

From the previous section, we know that each step increases
neither the optimal index-codelength nor the number of leaf
SCCs. In fact, we have the following lemma:

1

2

3

4

5

6

message-
connected

non-
degenerated

degenerated

Fig. 7. An example showing the importance of the pruning/appending sequence.
Arcs in G are marked with arrows, and edges in U with solid lines.

Lemma 8: We can always get a grounded information-flow
graph after a finite number of pruning and appending steps on
all the leaf SCCs.

Proof: Consider an algorithm that recursively (i) appends
a message-disconnected or a degenerated leaf SCC, and (ii)
prunes a message-connected or a non-degenerated leaf SCC.
We now show that the algorithm always terminates after a
finite number of steps.

From Propositions 1, 2, and 3, the number of leaf SCCs
always (i) decreases by one, or (ii) remains the same (In this
case, the leaf SCC assimilates one or more vertices that do
not belong to any leaf SCC. See Appendix C for proof.) after
each pruning/appending step. The pruning/appending step that
results in case (i) can be executed at most n/2 times as there
are at most n/2 leaf SCCs in a graph. The pruning/appending
step that results in case (ii) can be executed at most n − 2
times, as this step requires a leaf SCC to start with (which
must contain at least two vertices), and there are at most n− 2
vertices that does not belong to any leaf SCC.

So, the algorithm will terminate after at most 3n/2 − 2
appending/pruning steps.

Figure 6 depicts our algorithm to find a lower bound on
˜̀∗(G,U).

F. Obtaining a lower bound

The algorithm depicted in Figure 6 returns possibly different
lower bounds, Vout(G†), depending on which leaf SCC is
selected in each iteration. We give an example to show this,
after proving the following lemma:

Lemma 9: A non-degenerated leaf SCC may become
degenerated after appending/pruning other leaf SCCs.

Proof: Although no new leaf SCC is created after each
appending/pruning step, more vertices may be grounded, and
some non-degenerated leaf SCCs may become degenerated as
the degeneration conditions are satisfied with more grounded
vertices.

Example 4: Consider the index-coding instance depicted in
Figure 7. The directed subgraph induced by vertices {1, 2} is a
message-connected leaf SCC, that by {3, 4} non-degenerated,
and that by {5, 6} degenerated. Suppose that we first prune
the non-degenerated leaf SCC {3, 4}, followed by pruning the
message-connected {1, 2}, and then appending the degenerated
{5, 6}. This pruning/appending sequence gives a resultant
grounded graph with Vout(G†) = 4. However, if we append
{5, 6} and prune {1, 2} first, {3, 4} will be made degenerated
and will be appended instead. This gives a different G† with a
higher Vout(G†) = 5.

12

Yes

A grounded information-flow graph G†

An information-flow graph G

No

Is there any
message-connected,

message-disconnected,
or degenerated

leaf SCC?

Is there any non-
degenerated leaf SCC?

Yes

No

Pick one leaf SCCAppend/prune it

Fig. 8. An heuristic algorithm (which processes non-degenerated leaf
SCCs last) that recursively prune/append leaf SCCs to produce a grounded
information-flow graph

To obtain the tightest lower bound using the algorithm in
Figure 6, we perform the following combinatorial optimization:

Theorem 4 (Multi-sender: lower-bound): The optimal index-
codelength for a multi-sender index-coding instance represented
by (G,U) is lower bounded as

˜̀∗(G,U) ≥ maxVout(G†), (31)

where G† is the resultant graph after running the algorithm
depicted in Figure 6, and the maximization is taken over all
possible sequences of pruning/appending the leaf SCCs in the
algorithm.

G. Another lower bound using a heuristic algorithm

The lower bound obtained by the combinatorial optimization
in Theorem 4 has some implementation issues:

• For a large number of leaf SCCs, the optimization runs
in factorial time in the number of leaf SCCs.

• It provides little insights to when the algorithm is optimal
(i.e., giving a tight lower bound), and how good the
algorithm is (whether we can bound the gap between
the optimal index codelength and the lower bound).

In light of these issues, we design a heuristic algorithm. We
first prove the following lemma:

Lemma 10: The status of a leaf SCC being message-
connected, message-disconnected, or degenerated is not affected
by the appending/pruning of other leaf SCCs.

Proof: See Appendix D.
Lemma 10 suggests that it does not matter in what order we

prune or append message-connected, message-disconnected,
or degenerated leaf SCCs. At the end, all message-connected

Algorithm 2: Combined Appending-Pruning Algorithm
input : (G,U)
output : (G†,U†), where G† is grounded

// Initialization

foreach message-connected leaf SCC do
Prune the message-connected leaf SCC;

while there exists message-disconnected or degenerated leaf
SCC do

foreach message-disconnected leaf SCC do
Append the message-disconnected leaf SCC;

while there exists degenerated leaf SCC do
Append the degenerated leaf SCC;

// Iteration

while there exists leaf SCC do
// Only message-connected or non-degenerated leaf

SCCs left

if there exists message-connected leaf SCC then
Prune one message-connected leaf SCC;

else // Only non-degenerated leaf SCCs left

Prune one non-degenerated leaf SCC;

// Remove all leaf SCCs that turn

message-disconnected or degenerated

while there exists message-disconnected or degenerated leaf
SCC do

foreach message-disconnected leaf SCC do
Append the message-disconnected leaf SCC;

while there exists degenerated leaf SCC do
Append the degenerated leaf SCC;

leaf SCCs will be pruned, and all message-disconnected and
degenerated leaf SCCs appended.8

It matters, however, in which order we process non-
degenerated leaf SCCs. As pointed out in the previous section,
having more grounded vertices increases the chances of a non-
degenerated leaf SCC become degenerated for which we can
append (instead of pruning it in the event that it stays non-
degenerated). We will design a heuristic algorithm that leaves
the pruning of the non-degenerated leaf SCCs to the last—we
ground the rest as far as possible. This heuristic algorithm
is shown in Figure 8. Note that this heuristic algorithm is
a one-pass algorithm which does not iterate over operating
different sequences of leaf SCCs.

While the heuristic algorithm in Figure 8 produces a
grounded G† that we require, we re-write the algorithm in
a slightly different way, as Algorithm 2, which leads to a lower
bound (see Theorem 5) in a form similar to the upper bound to
be derived in Theorem 6 later. Having similar forms, we will
then identify classes of (G,U) for which the bounds match.

We now describe the idea behind Algorithm 2. Our lower
bound, Vout(G†), relates to the number of non-leaf vertices in
the original graph G via (23), (27), and (30). We see that we
only need to count the number of pruning steps. So, we design
Algorithm 2 such a way that we
• identify and count each pruning step,

8Here, we do not optimize how to append a degenerated leaf SCC, when
there are two or more ways to append it. So, we may get to a suboptimal
solution.

13

• separate the pruning of message-connected leaf SCCs in
the original graph G out in the Initialization phase (so
that we can express the lower bound as a function of G),

• process non-degenerated leaf SCCs last (after processing
all other types of leaf SCCs).

The Initialization and Iteration phases are the same except that
we only prune non-degenerated leaf SCCs in the latter, after
pruning and counting all message-connected leaf SCCs in G.

Note that any leaf SCC being operated is destroyed except
for degenerated leaf SCCs (see Appendix C). In this case, the
degenerated leaf SCC may assimilate other vertices to form
a larger leaf SCC, which can be of any type, depending on
how the new leaf SCC is connected in U . The type of this
newly-formed leaf SCC is to be identified during runtime.

After running Algorithm 2, we obtain the following lower
bound:

Theorem 5 (Multi-sender: lower bound): The optimal index
codelength for a multi-sender index-coding instance represented
by (G,U) is lower bounded as

˜̀∗(G,U) ≥ Vout(G†) (32a)
= Vout(G)−#(pruning steps in Initialization)
−#(pruning steps in all Iterations) (32b)

= Vout(G)− (Nmsg-conn(G,U) +Niteration), (32c)

where Nmsg-conn(G,U) is the number of message-connected
leaf SCCs in G, and Niteration is the number of times Iteration
repeated in Algorithm 2.

Proof: The lower bound is obtained by running Algo-
rithm 2. Equation (32a) follows from (20b); (32b) follows
from (23), (27), and (30); (32c) follows as one and only one
leaf SCC is pruned during each Iteration.

Remark 4: From (32c), we note that the lower bound depends
on the number of times Iteration is executed. In each iteration,
the choice of which non-degenerated leaf SCC to prune will
affect the lower bound. As a rule of thumb, we prune a
non-degenerated leaf SCC that will degenerate other non-
degenerated leaf SCCs, so as to reduce the number of Iterations.

VII. THE MULTI-SENDER CASE: AN UPPER BOUND

We now derive an upper bound, via a coding scheme, by
constructing special trees in the message graph U , referred
to as connecting trees. The vertex set of a connecting tree,
denoted by VT, has the following properties:

1) Each vertex in VT has one or more outgoing arcs in G,
and only to other vertices in VT. This means VT has no
outgoing arc to V \ VT,

2) No vertex in VT belongs to any message-connected leaf
SCCs or another connecting tree.

Let Ntree(G,U) denote the number of connecting trees that can
be found for a given instance (G,U). We will propose a coding
scheme that achieves the following index codelength:

Theorem 6 (Multi-sender: upper bound): The optimal index
codelength for a multi-sender index-coding instance represented
by (G,U) is upper bounded as

˜̀∗(G,U) ≤ Vout(G)− (Nmsg-conn(G,U) +Ntree(G,U)). (33)

message-connected degenerated

V inside
S

Vouside
S

Fig. 9. An index-coding instance represented by G (with arcs) and U (with
edges). There are two leaf SCCs in the graph: (i) message-connected, and (ii)
degenerated. Here, we can form a connecting tree using the hollow vertices.

The upper bound is optimized by finding the maximum
number of connecting trees.

For example, consider the graphs in Figure 9. We can form
one connecting tree using the hollow vertices.

Proof of Theorem 6: To simplify notation, we will show
that there exists an index code of length Vout−(Nmsg-conn+Ntree),
where we have dropped the arguments as they are clear from
the context. Let a set of connecting trees be {Tt = (VT

t , ET
t) :

t ∈ {1, 2, . . . , Ntree}}, and all the message-connected leaf
SCCs in G be {Cc = (VC

c ,AC
c) : c ∈ {1, 2, . . . , Nmsg-conn}}.

Furthermore, let the remaining vertices in G be V ′ = V \
{⋃Ntree

t=1 VT
t ∪

⋃Nmsg-conn
c=1 VC

c }. Denote by V ′out the set of all non-
leaf vertices in V ′. By definition, all VT

t ,VC
c , and V ′ are disjoint.

Our coding scheme is as follows:

1) For each connecting tree (VT
t , ET

t), we transmit all {xi⊕
xj : (i, j) ∈ ET

t }, i.e., we transmit the XOR of the
associated message pair for each edge. Note that we
transmit |VT

t | − 1 bits.
2) For each message-connected leaf SCC (VC

c ,AC
c) (which

is edge-connected by definition), we first obtain a
spanning tree in U , denoted by T ST

c = (VC
c , EST

c), where
EST
c ⊆ E . We then transmit all {xi ⊕ xj : (i, j) ∈ EST

c }.
Note that we transmit |VC

c | − 1 bits.
3) For the rest of the non-leaf vertices, we transmit {xi :

i ∈ V ′out}, i.e., we transmit the message bits uncoded.

Each vertex in the connecting trees and the message-connected
SCCs has at least one outgoing arc. Hence, the coding scheme
generates an index code of length Vout − (Nmsg-conn +Ntree).

We can easily verify that the index code can be transmitted,
as each message pair to be XORed is associated with an edge,
i.e., both the message bits belong to some sender.

Finally, we show that each receiver is able to obtain its
requested messages. Recall that each receiver i needs to decode
all messages in {xj : (j → i) ∈ A}. Now, each receiver i
must belong to one—and only one—of the following groups:

1) (Connecting tree) i ∈ VT
t : Knowing xi, receiver i can

decode all {xj : j ∈ VT
t } from {xj ⊕ xk : (j, k) ∈ ET

t }
by traversing the tree (which is connected by definition).
It can also decode the messages {xk : k ∈ V ′out}, sent un-
coded. Since all connecting trees and message-connected
leaf SCCs have no outgoing arcs, each incoming arc to
i must be from either VT

t \ {i} or V ′out. So, receiver i is
able to decode all its requested messages.

2) (Message-connected leaf SCC) i ∈ VC
c : Using the same

argument as that for the connecting trees, we can show
that receiver i can decode all its requested messages.

14

(a)

(c)

(b)

voutside

a vintside

degenerated

voutside

a vintside

message-connected

Fig. 10. We run Algorithm 2 on the graph in Figure 9. Subfigures (a) and (b)
show the initialization step where the message-connected leaf SCC is pruned
(by removing the dashed arc in (a)) and the degenerated leaf SCC is appended
(by adding the dashed arc in (b)), respectively. Subfigure (c) shows the final
graphs after the algorithm terminates.

3) (The remaining vertices) i ∈ V ′: Using the argument
in point 1, all incoming arcs to vertex i must come
from V ′out \ {i}. Since we sent {xj : j ∈ V ′out} uncoded,
receiver i can decode all its requested messages.

VIII. SPECIAL CASES WHERE THE BOUNDS ARE TIGHT
AND AN EXAMPLE

Combining Theorems 5 and 6, we conclude Niteration ≥
Ntree(G,U), and thus the optimal index codelength is found
within Niteration − Ntree(G,U) bits. Recall that Niteration is the
number of times Iteration repeated in Algorithm 2, and it is
upper bounded by the number of leaf SCCs in G that are not
message-connected. In the following special cases, we have
Niteration = Ntree(G,U), and the lower bound is tight.

Corollary 2: If no leaf SCC remains after running the
initialization of Algorithm 2, then

˜̀∗(G,U) = Vout(G)−Nmsg-conn(G,U). (34)

Proof: If Algorithm 2 terminates after the initialization
step, we have Niteration = 0, which implies that Ntree(G,U) =
Niteration = 0.

Corollary 3: If each bit xi in the message setM is known to
only one sender (i.e., the n sender constraint setsMs partition
M), then the optimal index codelength is given by (34).

Proof: If messages xi and xj belong to some sender s (i.e.
xi, xj ∈Ms), then there exists an edge (i, j) in the message
graph U . Otherwise, if the messages xi, xj belong to different
senders, it is impossible to have a path between i and j. This
means we have only message-connected or -disconnected leaf
SCCs, i.e., there is no semi leaf SCC. Thus, Niteration = 0.

Corollary 3 includes the result of the single-sender in-
stance [15] as a special case.

Note that the scenario in Corollary 3, where the senders’
message sets do not overlap, cannot be trivially solved by
splitting the multi-sender instance into multiple single-sender
instances, where each instance consists of the messages known
to one sender. We illustrate this with an example in Appendix E.

1 5

64

3

2

Fig. 11. An example where the optimal index codelength `∗ = 4 is achievable
by XOR of three bits

A. An example

We now illustrate the lower bound and the achievability for
the graph in Figure 9. For lower bound, we run Algorithm 2 to
obtain the resultant graph shown in Figure 10(c). Specifically,
starting from Figure 9, note that the furthest-left four vertices
form a message-connected leaf SCC. We prune this leaf SCC by
removing all outdoing arcs from an arbitrarily selected vertex.
This results in Figure 10(a), where we remove the outgoing
arc (dashed arc) from a. Now, the two middle vertices forms a
degenerated leaf SCC. We append this leaf SCC by adding an
arc (indicated by the dashed arc in Figure 10(b)) from vinside
to voutside. This completes the initialization step.

Entering the iteration stage, we note that the right three ver-
tices in Figure 10(b) now form a message-connected leaf SCC.
We prune this leaf SCC by removing all outgoing arc(s) from
the arbitrarily selected vertex voutside. The algorithm terminates
here, after destroying all leaf SCCs. From Theorem 5, we have
the lower bound ˜̀∗ ≥ 7− (1 + 1) = 5.

For achievability, recall that we can form a connecting tree
using the three hollow vertices in Figure 9. So, Theorem 6
gives the upper bound ˜̀∗ ≤ 7− (1 + 1) = 5.

In this example, we have a scenario where Niteration =
Ntree(G,U) = 1, and hence both the lower and upper bounds
are tight, giving the optimal index codelength of five bits.
This example illustrates that the upper and lower bounds can
coincide even if Niteration > 0 (cf. Corollary 2).

IX. DISCUSSIONS AND FUTURE WORK

We now show that the pairwise linear coding proposed
in Section VII can be suboptimal. Consider an index-coding
instance with six messages and six receivers, with A = {(1↔
2), (3 ↔ 4), (5 ↔ 6)} where (i ↔ j) , {(i → j), (j → i)},
and four senders having the following messages (x1, x3, x5),
(x3, x5, x2), (x5, x2, x4), and (x2, x4, x6) respectively.

The graphical representation is depicted in Figure 11. In this
example, there is no message-connected, message-disconnected,
or degenerated leaf SCC in G. Running Algorithm 2, we get
the lower bound ˜̀∗ ≥ 4.

We can also show that the largest Ntree = 1, i.e., the pairwise
linear coding (Theorem 6) can only achieve 5 bits. However,
if each sender sends the XOR of its three message bits, the
4-bit lower bound is achievable.

This example illustrates that—in stark contrast to the
single-sender case—the pairwise coding scheme described in
Section VII is not always optimal. It also shows a disadvantage
of using U : it cannot differentiate a sender having (x1, x2, x3)
from three senders having (x1, x2), (x2, x3), and (x1, x3)
respectively. For future work, we will investigate a more general
coding scheme and a more informative graphical representation.

15

APPENDIX A
A GRAPH CONTAINS NO LEAF SCC IF AND ONLY IF IT IS

GROUNDED

Every directed graph with no leaf SCC is grounded: Given
any graph G, we form a supergraph Gs by replacing each
(leaf or non-leaf) SCC with at least two vertices by a special
vertex, referred to as a supernode. First, Gs cannot contain any
directed cycle. Otherwise, all supernodes and vertices in the
cycle form an SCC, and it would have been collapsed into a
supernode. Since Gs is acyclic, a path from any node/supernode
must terminate somewhere. Now, if the G has no leaf SCC,
then Gs has no leaf supernode, and any path must terminate at
a regular (i.e., non-supernode) leaf vertex. �

Every grounded directed graph has no leaf SCC: This is
easily seen by the fact that all vertices in the leaf SCC cannot
be grounded, because these vertices can only reach vertices
within the same leaf SCC, all of which are non-leaf. �

APPENDIX B
PROOF OF PROPOSITION 1

The proof of Proposition 1 requires the following lemma. We
defer the proof of this lemma to after that of the proposition.

Lemma 11: From any index code, any receiver is able to
decode the messages of any message-disconnected leaf SCC.

Proof of Proposition 1: We first show that (21) holds.
The appending step adds a dummy leaf vertex and an arc from
the message-connected leaf SCC to the dummy vertex. This
grounds all vertices in the leaf SCC, and the leaf SCC is no
longer a leaf SCC. The connectivity of all other vertices outside
the leaf SCC is unchanged. So, this appending step neither
creates any new leaf SCC nor destroys any other existing leaf
SCC. Hence the number of leaf SCCs decreases by one after
this step. We have (21).

Next, we show that (22) holds. Adding the arc (v → n+ 1)
now additionally requires the dummy receiver to decode
messages in the appended leaf SCC, so ˜̀∗(G′,U ′) ≥ ˜̀∗(G,U).
But as the appended leaf SCC is message-disconnected,
Lemma 11 above says that its messages can be decoded without
using any side-information. Hence, the dummy receiver can
decode its required message defined in G′ even using the index
code for the original graph (G,U). We have (22).

Finally we show (23). A new arc is added from v ∈ VS to
a newly added dummy vertex n+ 1. Vertex v already had at
least one outgoing arc before the appending step, and n+ 1 is
a leaf vertex. So, we have (23).

It still remains to prove Lemma 11.
Proof of Lemma 11: Let VS be the vertex set of a message-

disconnected leaf SCC. By definition, there are two vertices
a, b ∈ VS that are not connected by any path in U . Let Va be
a set of all vertices connected to a, and Vb , V \ Va. This
means a ∈ Va, b ∈ Vb, and there is no edge across Va and Vb.

The lack of edge-connectivity (in U) between Va and Vb
implies that any index code can be partitioned into two parts
(or subcodes), c = (ca, cb), such that every bit in ca depends
on only {xi : i ∈ Va} and not on {xj : j ∈ Vb}, and vice

versa. This means the random variables Xa and (Cb, Xb) are
independent, even given Ca.9 In other words,

Xa −Ca − (Cb, Xb) (35)

forms a Markov chain.
Intuitively, the parts ca (which contains xa) and cb do not

have any message bit in common. Then it must be true that
receiver a decodes xb using only the part cb, i.e., without using
its prior message xa, which appears only in the other separate
part ca (its prior messages xa can help receiver a to decode
messages only in ca). Hence, if receiver a can decode xb, so
can any receiver—even one without any prior message.

We now prove this formally. Since a and b belong to an
SCC, receiver a must decode xb from the index code c and
its prior information xa (see Lemma 1). This means

H(Ca,Cb, Xa, Xb) = H(Ca,Cb, Xa) (36a)
⇒ H(Ca,Cb, Xb) +H(Xa|Ca,Cb, Xb)

= H(Ca,Cb) +H(Xa|Ca,Cb) (36b)
⇒ H(Ca,Cb, Xb) +H(Xa|Ca)

= H(Ca,Cb) +H(Xa|Ca) (36c)
⇒ H(Ca,Cb, Xb) = H(Ca,Cb) (36d)

Here, (36c) is due to the Markov chain (35). Equation (36d)
means that any receiver can obtain xb from the index code alone.
Consequently, any receiver can also decode the messages of all
predecessors of b (using the argument in the proof of Lemma 1),
which include all messages in the message-disconnected leaf
SCC. We have Lemma 11.

APPENDIX C
PROOF OF PROPOSITION 2

Let the appended arc be (vinside → voutside). Unlike append-
ing a message-disconnected leaf SCC, here, we change the
connectivity of some vertex outside the leaf SCC, i.e., voutside,
by creating an incoming arc to it.

The following lemma will be used to prove Proposition 2.
Lemma 12: Consider the appending step in Definition 7 for

a degenerated leaf SCC with some chosen V inside
S and voutside.

From any index code for (G,U) (the problem instance before
the appending step), receiver voutside must be able to decode
all messages in V inside

S .
Proof: By Lemmas 1 and 2, receiver voutside can decode

the messages of all neighbors of V inside
S , denoted as N (V inside

S),
as each vertex in N (V inside

S) is either grounded, a predecessor
of voutside, voutside itself, or a combination of these conditions.

Choose any a ∈ VS \ V inside
S and b ∈ V inside

S . receiver a must
decode xb, because there is a path from b to a by the definition
of SCC. We will show that if receiver a can decode xb, so can
receiver voutside. Consequently, receiver voutside can decode all
messages of V inside

S .
There is no edge across V inside

S and VS \ V inside
S by definition,

meaning that any index codebit cannot be a function of the
messages from both the sets. So, we can partition any index
code for (G,U) into c = (c1, c2), where c1 does not contain

9Recall that we use upper-case letters to denote the corresponding random
variables.

16

any message of V inside
S , and c2 contains only the messages of

V inside
S and N (V inside

S).
Intuitively, any advantage in decoding xb that receiver a has

over receiver voutside is due to knowing xa, but xa can help
receiver a only in decoding the messages in c1, which receiver a
can then use to decode the messages in c2 (which contain xb).
As receiver voutside is able to decode the prior messages of
N (V inside

S), which contains all the overlap of messages in c1
and c2, receiver voutside is as capable as receiver a in decoding
xb.

We now prove this formally. Recall that C2 is a function
of only messages (XV inside

S
,XN (V inside

S)), where XS , {Xi :
i ∈ S} for some set S; C1 can be written as a function
of (XN (V inside

S),XV remaining), where V remaining = V \ (V inside
S ∪

N (V inside
S)). Clearly, we have

I(XV remaining ;XV inside
S
|XN (V inside

S)) = 0 (37a)

⇒ H(XV remaining |XN (V inside
S))

−H(XV remaining |XN (V inside
S),XV inside

S
) = 0 (37b)

⇒ H(XV remaining |XN (V inside
S),C2)

−H(XV remaining |XN (V inside
S),XV inside

S
,C2) ≤ 0 (37c)

⇒ I(XV remaining ;XV inside
S
|XN (V inside

S),C2) = 0 (37d)

⇒ H(XV inside
S
|XN (V inside

S),C2)

−H(XV inside
S
|XN (V inside

S),XV remaining ,C2) = 0 (37e)

⇒ H(XV inside
S
|XN (V inside

S),C2,C1)

−H(XV inside
S
|XN (V inside

S),XV remaining ,C2,C1) ≤ 0

(37f)
⇒ I(XV remaining ;XV inside

S
|XN (V inside

S),C2,C1) = 0. (37g)

Here,
(37a) is due to the independence of the messages,
(37c) is derived because conditioning cannot increase entropy,
and C2 is a function of only messages (XV inside

S
,XN (V inside

S)),
(37d) and (37g) follow from the non-negativity of conditional
mutual information,
(37f) is derived because conditioning cannot increase entropy,
and C1 is a function of (XN (V inside

S),XV remaining).
Equation (37g) implies that

XV remaining − (XN (V inside
S),C2,C1)−XV inside

S
(38)

forms a Markov chain. Since a ∈ V remaining and b ∈ V inside
S ,

Xa − (XN (V inside
S),C2,C1)−Xb (39)

also forms a Markov chain.
Since a and b are both in the leaf SCC, receiver a must be

able to decode xb from the index code and its prior information
xa, i.e.,

H(Xb|C1,C2, Xa) = 0 (40a)
⇒ H(Xb|C1,C2, Xa, Xvoutside ,XN (V inside

S)) = 0 (40b)

⇒ H(Xb|C1,C2, Xvoutside ,XN (V inside
S)) = 0 (40c)

⇒ H(Xb|C1,C2, Xvoutside) = 0. (40d)

Here,
(40b) is derived because conditioning cannot increase entropy,

(40c) is due to the Markov chain (39),
(40d) is due to XN (V inside

S) being a deterministic function
of (C1,C2, Xvoutside) because receiver voutside can decode
XN (V inside

S) (which are the messages of the predecessors of
vertex voutside).

Equation (40d) implies that knowing xvoutside , receiver voutside
can decode xb. Using the argument in the proof of Lemma 1,
receiver voutside must be able to decode all messages in the leaf
SCC.

Proof of Proposition 2: First, we show that either (24)
or (25) must hold.

Consider Case 2 in Definition 7. Similar to the proof of
Proposition 1, adding the arc causes the original leaf SCC VS
to become non-leaf. Furthermore, all other leaf SCCs do not
change their status, since voutside is a leaf vertex and cannot
belong to any leaf SCC. So, we get (25).

For Case 1 in Definition 7, there are three possibilities:
voutside is
• Grounded: This case is similar to Case 2 above. The above

argument holds even if voutside is not a leaf vertex but is
grounded. Thus (25) holds.

• Not grounded and has no directed path to vinside: First, we
show there is neither any destruction of existing SCCs, nor
creation of any new one. This follows because no cycle is
created by the addition of the arc (vinside → voutside), since
voutside has no directed path back to vinside. Next, we need
to consider if the appended arc may change some SCCs
from leaf to non-leaf or vice versa. For the leaf SCC VS,
the appended arc makes it become non-leaf, since this is
an outgoing arc which does not form a cycle. For SCCs
other than VS, the appended arc is an incoming arc, which
will not change the SCCs’ being leaf or non-leaf. So, we
have (25) for this particular case.

• Not grounded and has a directed path to vinside: Here,
the appended arc creates a cycle between vinside (in VS)
and voutside (outside VS). This causes the original leaf
SCC VS to become a larger SCC by assimilating some
external nodes (that include voutside). If we could show
that none of the assimilated external nodes belongs to any
leaf SCC (meaning that no other leaf SCC is affected by
this appending step), then clearly either (24) or (25) holds
depending on whether the enlarged SCC have outgoing
arcs or not. Indeed none of the assimilated external nodes
belong to any leaf SCC, because they each have a directed
path to vinside. Thus, we conclude the argument for this
case.

To show (26), we follow the same line of argument as in
the proof of Proposition 1. Let (G,U) and (G′,U ′) denote the
graphs before and after the appending step, respectively. First,
adding an arc increases the decoding requirements and result
in ˜̀∗(G′,U ′) ≥ ˜̀∗(G,U). On the other hand, Lemma 12 says
that receiver voutside can decode all messages of V inside

S using
any index code for (G,U). This implies that any index code
for (G,U) is also an index code for (G′,U ′). So, ˜̀∗(G,U) is
achievable for the problem instance (G′,U ′). So, (26) must
hold.

Finally, as vinside already has at least one outgoing arc before
the appending step (since it belongs to an SCC), this step does

17

not change the number of vertices with outgoing arcs. We have
(27).

APPENDIX D
PROOF OF LEMMA 10

From Sections VI-D1 to VI-D3 and Appendices B to C, we
see that, besides the leaf SCC being operated on, all other
leaf SCCs remain as leaf SCCs. In addition, pruning and
appending neither remove nor add any edge in U , and thus all
other message-connected and message-disconnected leaf SCCs
remain as leaf SCCs of the same type. For a degenerated leaf
SCC not being operated on, it remains degenerated because
we have the following after the pruning/appending operation
on another leaf SCC:
• There is no addition or removal of edges in U , and so
V inside

S remains unchanged, and the leaf SCC will neither
become message-connected nor message-disconnected.

• The number of non-leaf vertices in Voutside
S can only

decrease, as all leaf vertices remain leaf vertices, and some
non-leaf vertices may become leaf vertices (we might add
more leaf vertices into Voutside

S , see the argument below);
and

• Each neighbor of V inside
S can still be in Voutside

S or be a
predecessor of some vertex in Voutside

S . This is because
appending other leaf SCCs will not change the neighbor
set. If we prune some other leaf SCC by removing all
outgoing arcs from a vertex, say v, that happens to be in
the path from a neighbor of V inside

S to Voutside
S , we just add

v (which has been made a leaf vertex) to Voutside
S .

APPENDIX E
A MULTI-SENDER INSTANCE CANNOT BE TRIVIALLY SPLIT

INTO MULTIPLE SINGLE-SENDER INSTANCES

Consider the following information-flow graph:

1 3

2 4

Suppose that there are two senders, one having (x1, x2), and
the other (x3, x4). We have a message-disconnected leaf SCC,
and the optimal index-codelength is ˜̀∗ = 4.

Consider splitting this index-coding instance into two single-
sender instances according to the senders’ messages. The first
instance consists of the first sender with messages (x1, x2).
Since there are only two messages, we cannot have vertices 3
and 4 in the information-flow graph, i.e., we have

1

2

This first single-sender instance has an optimal index code-
length of `∗ = 1, and an optimal code of x1 ⊕ x2.

The second instance can be similarly defined: a sender having
(x3, x4) and the information-flow graph is as follows:

3

4

This second single-sender instance has an optimal index
codelength of `∗ = 1, and an optimal code of x3 ⊕ x4.
Combining these two instances gives a total codelength of
˜̀∗ = 2 with a code (x1 ⊕ x2, x3 ⊕ x4). However, this is not
an index code for the original instance as receiver 2 cannot
decode x4. In conclusion, we cannot trivially split a multi-
sender uniprior instance into separate single-sender uniprior
instances. Having said that, one can do so for unicast instances.

REFERENCES

[1] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479–1494,
Mar. 2011.

[2] M. J. Neely, A. S. Tehrani, and Z. Zhang, “Dynamic index coding for
wireless broadcast networks,” in Proc. 31st IEEE Conf. Comput. Commun.
(INFOCOM), Orlando, USA, Mar. 25–30 2012, pp. 316–324.

[3] F. Arbabjolfaei, B. Bandemer, Y.-H. Kim, E. Şaşoğlu, and L. Wang,
“On the capacity region for index coding,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Istanbul, Turkey, July 7–12 2013, pp. 962–966.

[4] A. Blasiak, R. Kleinberg, and E. Lubetzky, “Broadcasting with side
information: Bounding and approximating the broadcast rate,” IEEE
Trans. Inf. Theory, vol. 59, no. 9, pp. 292–298, Sept. 2013.

[5] L. Ong, “Linear codes are optimal for index-coding instances with five or
fewer receivers,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu,
USA, June 29–July 4 2014, pp. 491–495.

[6] H. Yu and M. J. Neely, “Duality codes and the integrality gap bound for
index coding,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 7256–7268,
Nov. 2014.

[7] E. Lubetzky and U. Stav, “Nonlinear index coding outperforming the
linear optimum,” IEEE Trans. Inf. Theory, vol. 55, no. 8, pp. 3544–3551,
Aug. 2009.

[8] A. D. Wyner, J. K. Wolf, and F. M. J. Willems, “Communicating via a
processing broadcast satellite,” IEEE Trans. Inf. Theory, vol. 48, no. 6,
pp. 1243–1249, June 2002.

[9] D. Gündüz, A. Yener, A. Goldsmith, and H. V. Poor, “The multi-way
relay channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Seoul, Korea,
June 28–July 3 2009, pp. 339–343.

[10] L. Ong, S. J. Johnson, and C. M. Kellett, “The capacity region of
multiway relay channels over finite fields with full data exchange,” IEEE
Trans. Inf. Theory, vol. 57, no. 5, pp. 3016–3031, May 2011.

[11] Y. Birk and T. Kol, “Coding on demand by an informed source (ISCOD)
for efficient broadcast of different supplemental data to caching clients,”
IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2825–2830, June 2006.

[12] N. Alon, A. Hassidim, E. Lubetzky, U. Stav, and A. Weinstein,
“Broadcasting with side information,” in Proc. IEEE Symp. Found. Comput.
Sci. (FOCS), Philadelphia, USA, Oct. 25–28 2008, pp. 823–832.

[13] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding
problem and its relation to network coding and matroid theory,” IEEE
Trans. Inf. Theory, vol. 56, no. 7, pp. 3187–3195, July 2010.

[14] M. A. R. Chaudhry, Z. Asad, A. Sprintson, and M. Langberg, “On the
complementary index coding problem,” in Proc. IEEE Int. Symp. on Inf.
Theory (ISIT), St Petersburg, Russia, July 31–Aug. 5 2011, pp. 244–248.

[15] L. Ong and C. K. Ho, “Optimal index codes for a class of multicast
networks with receiver side information,” in Proc. IEEE Int. Conf.
Commun. (ICC), Ottawa, Canada, June 10–15 2012, pp. 2223–2228.

[16] A. S. Tehrani, A. G. Dimakis, and M. J. Neely, “Bipartite index coding,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, USA, July 1–6
2012, pp. 2256–2260.

[17] S. H. Dau, V. Skachek, and Y. M. Chee, “On the security of index
coding with side information,” IEEE Trans. Inf. Theory, vol. 58, no. 6,
pp. 3975–3988, June 2012.

[18] K. Shanmugam, A. G. Dimakis, and M. Langberg, “Local graph coloring
and index coding,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul,
Turkey, July 7–12 2013, pp. 1152–1156.

[19] K. Shanmugam and A. G. Dimakis, “Bounding multiple unicasts through
index coding and locally repairable codes,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Honolulu, USA, June 29–July 4 2014, pp. 296–300.

18

[20] F. Arbabjolfaei and Y.-H. Kim, “Local time sharing for index coding,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, USA, June 29–July
4 2014, pp. 286–290.

[21] J. B. Ebrahimi and M. J. Siavoshani, “On index coding and graph
homomorphism,” in Proc. IEEE Inf. Theory Workshop (ITW), Hobart,
Australia, Nov. 2–5 2014, pp. 541–545.

[22] L. Ong, “A new class of index coding instances where linear coding
is optimal,” in Proc. Int. Symp. on Netw. Coding (NetCod), Aalborg,
Denmark, June 27–28 2014.

[23] F. Arbabjolfaei and Y.-H. Kim, “Structural properties of index coding
capacity using fractional graph theory,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Hong Kong, China, June 14–19 2015, pp. 1034–1038.

[24] C. Thapa, L. Ong, and S. J. Johnson, “A new index coding scheme
exploiting interlinked cycles,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Hong Kong, China, June 14–19 2015, pp. 1024–1028.

[25] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, Nov. 2014.

[26] M. F. Wong, M. Langberg, and M. Effros, “On a capacity equivalence
between network and index coding and the edge removal problem,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Istanbul, Turkey, July 7–12
2013, pp. 972–976.

[27] D. Ozgul and A. Sprintson, “An algorithm for cooperative data exchange
with cost criterion,” in Inf. Theory Appl. Workshop (ITA), La Jolla, USA,
Feb. 6-11 2011.

[28] I.-H. Hou, Y.-P. Hsu, and A. Sprintson, “Truthful and non-monetary
mechanism for direct ata exchange,” in Proc. 51st Allerton Conf. Commun.
Control Comput. (Allerton Conf.), Monticello, USA, Oct. 2–4 2013, pp.
406–412.

[29] M. Ji, G. Caire, and A. F. Molisch, “Fundamental limits of distributed
caching in D2D wireless networks,” in Proc. IEEE Inf. Theory Workshop
(ITW), Seville, Spain, Sept. 9–13 2013.

[30] M. Sharir, “A strong connectivity algorithm and its applications to data
flow analysis,” Comput. Math. Appl., vol. 1, no. 7, pp. 67–72, 1981.

[31] R. Tarjan, “Depth-first search and linear graph algorithms,” Siam J.
Comput., vol. 2, no. 1, pp. 146–160, June 1972.

Lawrence Ong (S’05–M’10) received the BEng degree (1st Hons) in electrical
engineering from the National University of Singapore (NUS), Singapore, in
2001. He subsequently received the MPhil degree from the University of
Cambridge, UK, in 2004 and the PhD degree from NUS in 2008. He was
with MobileOne, Singapore, as a system engineer from 2001 to 2002. He was
a research fellow at NUS, from 2007 to 2008. From 2008 to 2012, he was
a postdoctoral researcher at the University of Newcastle, Australia. He was
awarded a Discovery Early Career Researcher Award in 2012 and a Future
Fellowship in 2014, both by the Australian Research Council. He is currently
a Future Fellow at the University of Newcastle

Chin Keong Ho (S’05–M’07) received the B. Eng. (First-Class Hons.,
Minor in Business Admin.), and M. Eng degrees from the Department
of Electrical Engineering, National University of Singapore in 1999 and
2001, respectively. He obtained his Ph.D. degree in 2009 at the Eindhoven
University of Technology, The Netherlands, where he concurrently conducted
research work in Philips Research. Since August 2000, he has been with
Institute for Infocomm Research (I2R), A*STAR, Singapore. He is Deputy
Department Head of Cognitive Communications Technology Department and
Lab Head of Energy-Aware Communications Lab. His research interest includes
green wireless communications with focus on energy-efficient solutions
and with energy harvesting constraints; cooperative and adaptive wireless
communications; and implementation aspects of multi-carrier and multi-
antenna communications. He has developed key technologies and led teams in
algorithmic development for industrial WiFi projects, and in exploratory work
for energy harvesting and wireless power to support wireless communications.
His work in unified study of wireless power and wireless communications
received the IEEE Marconi Prize Paper Award in 2015.

Fabian Lim received the B.Eng and M.Eng degrees from the National
University of Singapore in 2003 and 2006, respectively, and the Ph.D. degree
from the University of Hawaii, Manoa in 2010, all in electrical engineering.

He is currently a Research Staff Member in IBM Research Collaboratory,
Singapore. Previously from Nov 2014 to March 2016 he was with SK Hynix
Memory Solutions Inc, San Jose. From June 2013 to Nov 2014, he was with
LSI Corporation, San Jose. He was co-awarded an NSF grant in support
of his post-doctorate research, during the period Sept 2010 to May 2013 at
Massachusetts Institute of Technology, Cambridge. He has held short-term
visiting research positions at Harvard University in 2004 and 2005. From Oct
2005 to May 2006, he was a staff member in the Data Storage Institute in
Singapore. From May 2008 to July 2008, he as an intern at Hitachi Global
Storage Technologies, San Jose. In March 2009, he was a visitor at the Research
Center for Information Security, Japan.

